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Abstract—Metaverse is expected to provide mobile users with
emerging applications both in regular situation like intelligent
transportation services and in emergencies like wireless search
and disaster response. These applications are usually associated
with stringent quality-of-information (QoI) requirements like
throughput and age-of-information (AoI), which can be further
guaranteed by using unmanned aerial vehicles (UAVs) as aerial
base stations (BSs) to compensate the existing 5G infrastructures.
In this paper, we consider a new QoI-aware mobile crowdsensing
(MCS) campaign by UAVs which move around and collect data
from mobile users wearing metaverse devices. Specifically, we
propose “MetaCS”, a multi-agent deep reinforcement learning
(MADRL) framework with improvements on a Transformer-
based user mobility prediction module between regions and a
relational graph learning mechanism to enable the selection
of most informative partners to communicate for each UAV.
Extensive results and trajectory visualizations on three real
mobility datasets in NCSU, KAIST and Beijing show that MetaCS
consistently outperforms six baselines in terms of overall QoI
index, when varying different numbers of UAVs, throughput
requirement, and AoI threshold.

Index Terms—Mobile crowdsensing for metaverse, Quality-of-
information, User behavior modeling, Multi-agent deep reinforce-
ment learning

I. INTRODUCTION

Metaverse is expected to revolutionize the way people in-
teract by building immersive environment to communicate via
digital avatars from anywhere at anytime [1]–[3]. In metaverse,
human players wearing virtual reality (VR) or augmented
reality (AR) devices like headsets and helmets (e.g., Oculus
and HoloLens [4]) to interact with virtual immersive 3D
environments to provide cyber-virtual experiences in physical
worlds. They constantly travel on-the-go to achieve certain
tasks (e.g., virtual healthcare and transportation services) via
5G ultra-high reliable and ultra-low latency wireless con-
nections. User behaviors (e.g., trajectories and postures) are
uploaded to the surrounding mobile edge computing (MEC)
infrastructures and base stations (BSs) in real-time, and the
object creation, scene rendering and others for immersive 3D
interactions in virtual environments are periodically delivered
to their equipped devices.

However, existing terrestrial MEC infrastructures in a 5G
network may be overloaded so that the network resources
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Fig. 1: Overall considered scenario of QoI-aware MCS for
metaverse.

(e.g., bandwidth and time) are insufficient to service all users
simultaneously. Furthermore, MEC infrastructures and BSs
usually locate at fixed positions so that they cannot meet the
application-level quality-of-information (QoI) requirement of
underlying serviced users dynamically, whose spatial density
are continuously changing. QoI represents a set of metrics to
judge if information is fit-for-use for particular purpose [5].
Here we define the QoI requirements of a metaverse appli-
cation by (but are not limited to) the network throughput (in
Mbps) and data freshness from the time it is generated till
received. Data freshness requirement for QoI can be repre-
sented by the “age of information” (AoI [6], [7]) as a metric
to evaluate the timeliness of data collection, defined by the
elapsed period of time after the latest successful transmission
of the valid uploaded data, within a given AoI threshold of
metaverse applications.

Mobile crowdsensing (MCS [8], [9]) paved the way for
possible solutions to provide wide-range, timely metaverse ap-
plications in the above resource limited scenarios. The authors
in [10], [11] envisioned a MCS-enabled metaverse paradigm
for digital twins and immersive VR/AR applications, where
unmanned aerial vehicles (UAVs) are employed in temporary
adventures as mobile BSs [12]–[14], due to their features of
high flexibility and ease of deployment [15], [16], to provide
sufficient amount of data to satisfy metaverse applications
with frequent transient data demands (e.g., seasonal festival
activities requested by virtual sightseeing providers). However,
specific solutions are not given. Thus, we explicitly consider
the QoI-aware MCS campaign for metaverse in this paper,
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where multiple UAVs are deployed and navigated as mobile
aerial BSs to provide uplink network capacities of underlying
metaverse applications across space and time domains. As
shown in Fig. 1, UAVs move around in the workzone and
receive data uploaded from multiple users (e.g., students and
staff members in campus environments) who are equipped
with metaverse devices.

The key challenge is how to balance the trade-off between
UAV movements for data collection, saving battery power and
maintaining satisfactory level of QoI for all users simultane-
ously. For example, students in a campus environment usually
exhibit group behaviors (e.g., taking classes and going to the
dining hall together), where the terrestrial MEC network will
be overloaded and thus more UAVs will be needed. On the
other hand, if a user goes to a corner area without being
serviced, AoI threshold will be violated and thus service
dropout may occur. In this case, a UAV should be scheduled to
access this user in time even if long-distance travel is required.

Therefore, the goal of this paper is to navigate a group of
UAVs as mobile BSs to ensure the satisfactory attained level of
QoI for underlying metaverse applications with limited energy
supply. To calculate the optimal policy, it is hard to formulate
it as a constrained optimization problem and utilize classical
mathematical methods (e.g., Lagrangian duality with KKT
conditions) to obtain a closed-form solution. Recent achieve-
ments along the direction of multi-agent deep reinforcement
learning (MADRL [17], [18]) offer a promising way to address
this problem. However, existing approaches seldom consider
suitable collaborative control mechanism among UAVs and
accurate prediction of the spatial-temporal user distribution.

To this end, in this paper, we propose “MetaCS”, a QoI-
aware MCS framework for metaverse, by using the state-of-
the-art MADRL solution IPPO [19] as the start point of the
design. Our contribution is four-fold:

1) To meet QoI requirements of metaverse applications by
MCS, we explicitly define two metrics as throughput
satisfactory ratio and AoI satisfactory ratio, and integrate
them together as one single performance metric called
“overall QoI index”, to indicate to what extent the
provided metaverse service can meet the application
requirement.

2) We propose a human mobility prediction mechanism
by designing a novel Transformer-based framework to
model the spatiotemporal moving patterns of mobile
users between partitioned regions in the workzone,
which is especially helpful for UAVs to forecast and
deal with surrounding emergencies that affect overall
QoI experience by incurring network overload or service
dropout.

3) We propose a collaborative UAV control framework
by designing a relational graph learning mechanism
that enables the selection of most informative partners
for each UAV, and a graph-guided scheme to achieve
efficient coordination of UAVs based on IPPO.

4) We perform extensive experiments on three real-world
mobility datasets in NCSU (USA) and KAIST (South
Korea) for campus environments, and Beijing (China)
for urban environments. We find the most appropriate

hyperparameters, visualize the trajectories and make
performance comparisons with six baselines. Results
confirm that MetaCS has robust improvements on overall
QoI index.

The remainder of the paper is organized as follows. Sec-
tion II reviews the related work. Section III presents the system
model. Section IV describes problem definition and formu-
lation. Section V describes our proposed approach MetaCS.
Section VI gives the evaluation results. Finally, Section VII
concludes the paper.

II. RELATED WORK

A. MCS and UAV Crowdsensing

MCS leverages mobile crowds to provide large-scale, low-
latency, and high-quality sensing services in metaverse [20].
For example, Zhou et al. in [21] proposed a two-step solution
for joint controlling of sensing and transmission processes
and corresponding energy consumption in MCS, which are
validated in high-capacity IoT sensing scenarios. Li et al.
in [22] developed a Context-Aware Worker Selection (CAWS)
algorithm to select a large number of workers to perform a
sensing task collaboratively under a limited budget.

On the other hand, UAVs, forming as flying ad-hoc net-
works, are able to provide cost-effective MCS services, to offer
high flexibility and easy adaptability to different application
contexts, making them suitable to meet crucial sensing require-
ments [23]–[25]. For example, Gao et al. in [21] optimized
sensing coverage and data quality by guiding human partici-
pants and using UAVs to collect data from rarely sensed points
of interest. Liu et al. in [12] proposed a MADRL framework
for energy-efficient multi-UAV navigation to maximize the
total amount of collected data and ensure geographical fairness
among randomly distributed points of interest. Hu et al. in [26]
introduced an optimization problem for the wireless-powered
IoT system, and utilized UAVs to transfer energy and collect
data from ground sensor nodes.

B. MADRL and Using IPPO as Base Design

In cooperative tasks, a group of agents interacts with
the environment to learn to achieve the shared objective in
a collaborative way. In general, the task is modeled as a
decentralized partially observable Markov decision process
(Dec-POMDP) [27], as a tuple < U ,S,O,A, R, Pr, γ >,
where U ,S,O,A are the set of agents, states, observations
and actions, respectively. R,Pr, γ are the reward function,
state transition probabilities, discount factor, respectively. The
shared objective is to maximize the expected discounted
cumulative reward E

[∑T−1
t=0 γt

∑U
u=1 r

u
t

]
.

To solve it, various MADRL methods are proposed. For
example, IPPO [19] and DNAC [28] completely separated
the observations of agents and independently updated the
corresponding critics. Moreover, HiT-MAC [29] and EOI [30]
encouraged agent cooperation by setting progressive goals for
each agent or providing auxiliary rewards. However, they can-
not fully exploit each agent observation and thus are vulnerable
to the non-stationary cases caused by policy changes across
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TABLE I: Important notations used in this paper.

Notation Explanation

u, U,U , P Index, total number, set of UAVs and number
of antennas on each UAV

m,M,M, Mu
t Index, total number, set of mobile users and set

of scheduled users

t, T, δ, δut,mov, δut,col Index, total number of timeslots, duration of a
timeslot, duration for UAV movement and data
collection in each timeslot

dmt ,∆du,mt , D Current data amount of user m, and collected
data and generated data amount in a timeslot

µu,m
t , µm

th , τmth Data rate of a user in a timeslot, throughput
requirement, AoI threshold of a user m

τ, Iµ, Iτ , I Episodic AoI, throughput satisfactory ratio, AoI
satisfactory ratio, overall QoI index

ou
t ,a

u
t , r

u
t Observation, action and reward for UAV u in

timeslot t

agents. In our considered scenario where network overload
or service dropout may happen, observation exchanges and
collaborative execution among UAVs become even more crit-
ical. Another line of methods aggregated all the observations
and guided agents to collaborate through a shared reward
with credit assignment, e.g., MAPPO [31] and DPN [32]. In
our scenario, when more UAVs are deployed, these methods
may suffer from insufficient network bandwidth by increased
communication overhead, and individual UAV contribution to
the shared reward cannot be clearly distinguished resulting
in a sub-optimal policy. To this end, we choose IPPO as the
start point of our design, however it is worth noting that our
proposed framework MetaCS can also be applied to other
actor-critic based MADRL solutions.

III. SYSTEM MODEL

Without loss of generality, we assume that a group of UAVs
U ≜ {u|u = 1, 2..., U} are flying in a 2D cartesian coordinate
system at a fixed height to collect data from mobile users
equipped metaverse devices (e.g. Google Glass1), denoted by
M ≜ {m|m = 1, 2, ...,M}. These devices continuously
generate user data (e.g., position calibration in the virtual
world). Each UAV is equipped with P antennas, and each
device is with one single omni-directional antenna.

We discretize a task into T timeslots with a fixed length δ,
where t represents the index of the current timeslot. In each
timeslot, δ is divided into two parts: for UAV movement δut,mov

and for user data upload in the uplink channel δut,col. For the
former, UAV u moves in a radial direction θut ∈ [0, 2π) with
a fixed moving speed vut ∈ [0, vmax]. For the latter, we have
δut,col = δ − δut,mov.

All UAVs has equal initial energy reserve e0. Based on the
propulsion energy model of rotary-wing UAVs [33], the energy
consumption of a UAV u in t is given by:

eut = τ ·
[
c1

(
1 +

3·(vut )
2

(vtip)2

)
+ c2

(√
1 +

(vut )
4

4v̄4 − (vut )
2

2v̄2

) 1
2

+ 1
2c3(v

u
t )

3
]
,

(1)
where c1, c2, c3 are constants that depend on UAV’s weight,
rotors, blades and air density. vtip and v̄ are the tip speed

1https://veo.glass/en US/products/google-glass

and average speed of the rotor, respectively. Thus the average
energy consumption of all UAVs after task completion can be
calculated by ē = 1

U

∑U
u=1

∑T
t=1 e

u
t .

Similar to [34], we consider that each UAV can collect
data from multiple users (no more than P ) simultaneously
by adopting Multi-User Multiple-Input Multiple-Output (MU-
MIMO) techniques. In each timeslot t, each user m generates
a fixed-size data D, and his/her current data amount in
the buffer is denoted by dmt = dmt−1 + D. It is crucial
to carefully decide which group of users will be scheduled
for uplink transmission in t that has high impact on the
overall performance. Thus, for each UAV u, let Mu

t ≜
{m ∈ M| a user m is selected by the UAV u} denote the set
of transmitting users and Mu

t = |Mu
t |. Then, the received

signal vector ϱut of size Mu
t can be expressed as:

ϱut =
√
ρ0H

u
t η

u
t + ct, (2)

where Hu
t represents corresponding channel matrix between

a UAV u and selected Mu
t users of size P ×Mu

t .
√
ρ0η

u
t is

the vector of symbols of size Mu
t × 1 which are transmitted

simultaneously by these users (where the average transmitted
power of each user is ρ0). ct ∼ CN (0, ψ0IP ) represents the
additive white Gaussian noise at each UAV, with noise power
ψ0.

Without loss of generality, we model the ground-to-air
uplink propagation channel by considering both large-scale
and small-scale channel fading. Specifically, we jointly con-
sider the Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)
effects, along with their occurrence probabilities. Follow-
ing [35], we have path loss:

ψu,mt = 20 log

(
4πflu,mt

c

)
+ wNLoS

+
wLoS − wNLoS

1 + w1 exp (−w2(θ
u,m
t − w1))

,

(3)

where lu,mt , θu,mt denote the Euclidean distance and the
elevation angle between a UAV u and a user m, f is the
channel frequency, c is the speed of light, wLoS and wNLoS

are average additional path loss, w1 and w2 are constants that
depend on the environment (i.e., rural or urban), respectively.
Then, large-scale fading is calculated by βu,mt = β0ψ

u,m
t ,

where β0 is the channel gain at a reference distance of one
meter.

For small-scale fading, we consider the F -factor Rician fad-
ing with E[∥ϑu,mt ∥2] = 1 for both LoS and NLoS links during
uplink transmissions, as: ϑu,mt =

√
F
F+1 ϑ̄

u,m
t +

√
1

F+1 ϑ̃
p
t ,

where ϑ̄u,mt is the complex vector of the LoS path between a
user m and P antennas of a UAV u, while ϑ̃pt ∼ CN (0, IP )
denotes the Rayleigh fading component for NLoS links.

We consider linear beamforming [36] from users to a UAV,
where the received data is:

η̂ut = [Wu
t ]

Hϱut =
√
ρ0[W

u
t ]

HHu
t η

u
t + [Wu

t ]
Hct, (4)

where Wu
t =

[
w
u,Mu

t (1)
t , · · · ,wu,Mu

t (M
u
t )

t

]
denotes the

beamforming matrix with the same size as Hu
t , and ∥wu,m

t ∥ =
1,m ∈ Mu

t , respectively. To eliminate the interference among
different users, we employ Zero-Forcing [37], i.e, Wu

t =
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Hu
t [(H

u
t )

HHu
t ]

−1. Then, we have the received signal-to-noise
ratio (SNR) from a user m to a UAV u in timeslot t, as:
γu,mt =

ρ0∥(wu,m
t )HHu

t (m)∥2

ψ0
. To measure the actual data

rate µu,mt , we apply the Wishart matrix [36] and Jensen’s
inequality [34], to approximate the data rate as:

µu,mt = B log(1 + γu,mt )

= B log

(
1 +

ρ0
E {[((Hu

t )
HHu

t )
−1]p,p}ψ0

)
≥ B log

(
1 +

ρ0β
u,m
t
ψ0

P−Mu
t

)
= B log

(
1 +

(P −Mu
t )ρ0β0ψ

u,m
t

ψ0

)
,

(5)

where B is the available bandwidth. Note that here we use
Maximum-Ratio Combining (MRC [38]) beamforming (i,e.,
Wu

t = Hu
t ) instead of ZF, in special cases where Mu

t = 1,
thus:

µu,mt ≜ B log

(
1 +

Ωut ρ0β0ψ
u,m
t

ψ0

)
, (6)

where Ωut = P −Mu
t if Mu

t ≥ 2, and Ωut = P if Mu
t =

1. Following [39], we make the assumption that successful
transmissions of D can only occur if the data rate exceeded
the throughput requirement µmth and at least one piece of data
is transmitted within the collection time of each UAV u, as:
µu,mt ≥ µmth and µu,mt · δut,col ≥ D.

Finally, each user also maintains a First-In-First-Out (FIFO)
queue and the data leave the queue only when UAVs approach
and collect it. In each timeslot t, a UAV u spends δut,col
of time staying as a temporal multi-antenna BS to collect
data from at most Mu

t users simultaneously by uplink MU-
MIMO, with different data rates µu,mt . After, the remaining
data at user m becomes dmt −

∑
u∆d

u,m
t , where ∆du,mt =

min
(
dmt , ⌊

µu,m
t δut,col
D ⌋

)
represents data collected by UAV u

in timeslot t. Note that when a user is servived by multiple
UAVs simultaneously, he/she will transmit the same data to all
the UAVs via their equipped omni-directional antenna, which
enhances the robustness of data collection process.

IV. PROBLEM DEFINITION AND FORMULATION

The goal of this paper is to ensure the attained QoI (in terms
of throughput and data freshness requirements) for all users
in metaverse. For the former, we aim to provide satisfactory
amount of bandwidth to meet his/her throughput requirement
to enable user uplink data transmissions. For the latter, we use
AoI [40] to capture the data freshness and explicitly define an
AoI threshold τmth to represent the maximum waiting time that
users can tolerate.

Definition 1: Throughput Satisfactory Ratio. It is defined as
the ratio between the attained throughput µmT during the task
process T and the throughput requirement µmth enforced by the
metaverse application, of all users, as:

Iµ =
1

M

M∑
m=1

Imµ =
1

M

M∑
m=1

µmT
µmth

∈ [0, 1] , (7)

where µmT = 1
Tδ

∑U
u=1

∑T
t=1 ∆d

u,m
t denotes the average data

rate when transmitting the total amount of data to UAVs

during the task duration, and µmth is determined by the specific
metaverse application of a user m. Iµ represents the average
degree of satisfaction the MCS-enabled metaverse system can
provide to the end users in terms of throughput, with a higher
value of Iµ closer to 1 being preferable, and values higher
than 1 is clipped since it is fully satisfied and providing more
goes beyond the application requirement.

Definition 2: Episodic AoI. It is defined as the average
waiting time of the earliest generated data not yet uploaded at
all users’ FIFO queues at each timeslot t, by:

τ =
1

MT

M∑
m=1

T∑
t=1

τmt =
1

MT

M∑
m=1

T∑
t=1

(t− tm1 ), (8)

where tm1 denotes the timeslot index of the earliest generated
data in a user m’s FIFO queue (that has not been uploaded
yet). Thus, a smaller τ represents a shorter average waiting
time or better metaverse application experience for user uplink
data transmissions.

Since different metaverse applications requires diverse AoI
performance, we explicitly introduce an AoI threshold τmth to
represent the maximum tolerable waiting time, or an accept-
able bar for user uplink data transmissions. To capture the
essence that UAVs need to maintain the satisfactory level of
attained AoI of all users at every timeslot, we introduce the
following definitions.

Definition 3: AoI Satisfactory Ratio. It is defined as the
average proportion of time during which a user’s AoI threshold
is successfully maintained, over the course of their task
duration T , of all users, as:

Iτ =
1

MT

M∑
m=1

T∑
t=1

Imt,τ =
1

MT

M∑
m=1

T∑
t=1

1(τmt ≤ τmth ) ∈ [0, 1],

(9)
whose value closer to 1 indicates the higher possibility to
provide end user satisfactory AoI experiences; 1(·) is the
indicator function, where it takes value 1 if the condition is
satisfied and otherwise 0.

Since our goal is to ensure both throughput and data
freshness as the overall QoI requirement, we aim to define
an integrated performance index to consider these two simul-
taneously, as the minimum of two ratios. In this way, a user’s
experience is quantified. Further, energy consumption of all
UAVs need to be fully considered, and thus we introduce the
overall QoI index as:

I =
min(Iµ, Iτ )

ē
. (10)

A. Problem Definition

Our goal is to find an optimal to navigate all UAVs and
to schedule all users’ uplink transmissions to maximize the
overall QoI index in T timeslots, as the following optimization
problem:

P1 : max
{vut ,θut ,Mu

t }
I s.t.

T∑
t=1

eut ≤ e0, ∀u ∈ U . (11)
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Note that P1 is challenging to solve due to the following
reasons. First, two time periods δut,mov, δ

u
t,col in a timeslot t are

trading off with each other thus obtaining optimal time alloca-
tion is challenging. Second, QoI requirements for throughput
and data freshness vary from different metaverse applications.
For example, tasks with extensive VR and AR requests may
pose greater challenges in mitigating network overload and
AoI violation, respectively [41]. Thus it is challenging to
satisfy all the users with diverse QoI requirements at the same
time.

Third, satisfactory episodic AoI experiences in a task du-
ration is trading-off with the received throughput of all users,
under the limited UAV capabilities and total network band-
width. On one hand, when UAVs are evenly scattered across
different regions to achieve spatial division of labor, episodic
AoI attained by all users may violate the AoI threshold given
that insufficient number of UAVs are scheduled to provide
satisfactory uplink throughput for usually unevenly distributed
users. Contrarily, when UAVs well learn to collaborate to
service users simultaneously by OFDMA in the same region,
sufficient throughput can be guaranteed, however possibly
sacrificing AoI experiences of those remote users. Thus, an
optimal UAV movement is expected to ensure two QoI metrics
at the same time.

Finally, selecting an optimal set of users to service by a
UAV in a timeslot is challenging. According to Eqn. (6), the
uplink MU-MIMO data rate µu,mt relates to the number of
scheduled users Mu

t and channel conditions from a user m
to a UAV u. An AoI greedy policy may schedule as many
users as possible that likely increase the AoI satisfactory ratio,
however bringing lower µu,mt and unsuccessful data upload,
and thus lower throughput satisfactory ratio as a return.

The above optimization problem is NP-hard since even
checking the optimum requires a thorough search of the
entire solution space, where computational complexity will
exponentially increase with respect to task duration T and
UAVs U . Hence, a good heuristic trajectory planning strategy
is required. We model P1 as a sequential decision problem
and utilizing MADRL methods to solve it.

B. Problem Formulation as a Dec-POMDP

Let a seven-tuple < U ,S,O,A, R, Pr, γ > be a Dec-
POMDP for P1, where Pr and γ are transition probabilities
and discount factor, respectively.

1) Observation space: O ≜ {ot}. Each UAV maintains its
local observation out with a fixed sensing range, which consists
of two parts. First is the location, remaining amount of data,
and data generation time of all users within the sensing range;
and second is the current position and remaining energy of all
UAVs within the sensing range.

2) Action space: A ≜ {at}. For each UAV, its aut =
(vut , θ

u
t ,Mu

t ), where vut is bounded by a maximum speed
vmax; θut represents the angle which controls the direction of
UAV movement; and Mu

t is its scheduled users to service in
a timeslot.

3) Reward function: For each UAV u, its environmental
reward is:

rut =
min(Iut,µ, I

u
t,τ )

eut
, ∀t, u, (12)

where Iut,µ and Iut,τ denote the attained temporal throughput
and AoI satisfactory ratios in timeslot t, similar to the def-
inition of Eqn. (9) but defined from a UAV u’s perspective,
as:

Iut,µ =

∑
m∈Mu

t
µmt∑

m∈Mu
t
µmth

, Iut,τ =

∑
m∈Mu

t
1(τmt ≤ τmth )

Mu
t

, ∀t, u.

(13)
It is worth noting that maximizing Eqn. (12) in this Dec-
POMDP settings is strictly equivalent to minimizing Eqn. (11),
which is compatible with MADRL-based methods as the start
point of our design.

V. PROPOSED SOLUTION: METACS

We propose “MetaCS”, a novel MADRL framework to
navigate a group of UAVs to provide satisfactory QoI services
for mobile users in metaverse. As shown in Fig. 2, MetaCS
consists of two improvements: a human-centric predictive
framework called “Pred” to forecast mobile users behaviors
in the task workzone (see Section V-A), and a collaborative
multi-UAV control framework called “Colla” by relational
graph-guided IPPO [19] (see Section V-B).

A. Human-Centric Predictive Framework for Mobile User
Behavior Prediction

We propose a human-centric behavior prediction framework
Pred by modeling the spatial-temporal movement patterns
of mobile users. First, we divide the entire workzone into
Z regions, and without loss of generality, we consider a
common phenomenon that users in the same region typically
exhibit similar behavior patterns in terms of the in/out flows
z to/from nearby regions. We define z as the number of
users moving into/out of the corresponding region during
timeslot t, denoted by xzt,in and xzt,out, respectively. Thus,
xt = {xzt,in, xzt,out}Zz=1 ∈ RZ×2 represents inflows and
outflows of all the regions during timeslot t.

Then, given the sequence of in/outflows of all the regions
in the past L timeslots X = {xt−L+1, · · · ,xt−1,xt}, Pred
aims to accurately predict xt+1 in the next timeslot. For an
input matrix X ∈ RL×Z×2, we use Xt:: ∈ RZ×2 to represent
the temporal slice (i.e., different timeslots) and X:z: ∈ RL×2 to
represent the spatial slice (i.e., different regions), respectively.
Leveraging Transfromer [42] framework that is widely used
to model complex and dynamic spatial-temporal dependencies
effectively, our proposed Pred is composed of the skip
connection of multiple spatial-temporal encoder layers. Each
encoder contains both a spatial and a temporal component,
namely: a Temporal Self-Attention (TSA) module for long-
term temporal pattern modeling, and a Multi-Head Spatial
Self-Attention (MHSSA) module that simultaneously captures
the short-range and long-range dynamic spatial dependencies.
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Fig. 2: (a) Human-centric predictive framework “Pred”, (b) Overall architecture for MetaCS, and (c) collaborative multi-UAV
control framework “Colla”.

1) Temporal Self-Attention (TSA): In metaverse applica-
tions, a mobile user’s mobility pattern (e.g., periodic, trending)
often dynamically changes over time, and thus satisfactory QoI
experiences highly rely on the extraction and utilization of
this temporal pattern. We employ TSA to model user behavior
patterns in consecutive timeslots as a sequence. Specifically,
we first obtain the query, key, and value matrices of self-
attention operations for each region k as:

Q(T )
z = X:z:W

(T )
Q , K(T )

z = X:z:W
(T )
K , V(T )

z = X:z:W
(T )
V ,
(14)

where W
(T )
Q ,W

(T )
K ,W

(T )
V ∈ R2×d are learnable matrixes and

d is the embedding dimension. Then, we apply self-attention
operations in the temporal dimension to model the temporal
relationship of user behaviors between current timeslot t and
previous L timeslots in z as:

A(T )
z =

Q
(T )
z (K

(T )
z )⊤√
d

∈ RL×L. (15)

Finally, we obtain the TSA output by multiplying the attention
scores with the value matrix as:

TSA(X:z:) = softmax(A(T )
z )V(T )

z . (16)

2) Multi-Head Spatial Self-Attention (MHSSA): Similarly
to TSA, we aim to capture the spatial relationship between
different regions at current timeslot t, as:

Q
(S)
t = Xt::W

(S)
Q , K

(S)
t = Xt::W

(S)
K , V

(S)
t = Xt::W

(S)
V ,

(17)

A
(S)
t =

Q
(S)
t (K

(S)
t )⊤√
d

∈ RZ×Z , (18)

where A
(S)
t is the attention score between any two regions

in timeslot t. Then, we incorporate two heads to extract
distinct spatial features, corresponding to two different masks:
geographic mask Mgeo and semantic mask Msem. Mgeo is
a binary matrix, whose weight is 1 if the distance between
two regions is less than a threshold; and 0 otherwise. In this
way, we can mask the attention of region pairs far away
from each other and focus on nearby regions. On the other

hand, we compute the similarity of past in/outflows between
regions using the Dynamic Time Warping [43] algorithm. That
is, we select Nsem regions with the highest similarity for
each region as its semantic neighbors. Then, we construct the
binary semantic masking matrix Msem by setting the weight
between the current node and its semantic neighbors to 1; and
0 otherwise. Thus we can find distant region pairs that exhibit
similar behavior patterns. Then, MHSSA is calculated by:

MHSSA(Xt::) = softmax(A
(S)
t ⊙Mgeo)V

(S)
t

⊕ softmax(A
(S)
t ⊙Msem)V

(S)
t ,

(19)

where ⊙ indicates the Hadamard product and ⊕ is concatenate
operation. In this way, the spatial self-attention module simul-
taneously incorporates geographic and semantic neighborhood
information.

3) Spatial-Temporal Encoder: We concatenate TSA and
MHSSA results, to integrate spatial and temporal information
simultaneously, as:

Encoder(X) = MLP
( (

TSA(X)⊕MHSSA(X)
)
Wout +X

)
+X,

(20)
where Wout is a linear transformation. Note that here we add
two residual connections [44] for securing training stability
and define these operations as a Spatial-Temporal Encoder
block. We adopt Nblock blocks to accurately model the behav-
iors of mobile users and employ an MLP to output the final
prediction result x̂t+1. Then, Pred is updated by minimizing
the mean squared error (MSE) between the true in/out flows
and the predicted ones:

Lpred = E
[
(x̂t+1 − xt+1)

2
]
. (21)

Pred helps UAVs focus on those timeslots and location
where network overload or service dropout will most likely
happen, by capturing the spatio-temporal user movement
pattern between regions. For each UAV u, we concatenate
the predicted x̂t+1 with its observation out , to get a hybrid
observation σut . Pred can be easily extended to a multi-step
prediction, by increasing the number of steps in the prediction
process, at the cost of increased computational complexity.
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To maintain low inference time (see Section VI-F), which is
essential in our considered metaverse application scenario, we
opt to utilize the one-step prediction in Pred.

B. Collaborative Multi-UAV Navigations by Relational
Graph-Guided IPPO

Having enriched the observation of all UAVs with predicted
user movement in the next step is not enough to efficiently
navigate UAVs to provide satisfactory QoI, this is because:
(a) each UAV can only access the detailed information (i.e.,
the remaining data amount and data generation time) of
the surrounding users within a fixed sensing range; and (b)
each UAV can only obtain the current position or remaining
energy of other UAVs through communications, which is not
scalable in large environments where communication costs are
prohibitively expensive. Therefore, we propose a collaborative
multi-UAV navigation framework by using relational UAV
communication graph-guided IPPO. However, UAV pairs may
not affect with each other in certain scenarios (e.g., distant
UAVs in charge of different regions). The softmax function
assigns small but nonzero weights to unrelated and trivial
UAVs, which weakens the benefits brought by a few interactive
UAVs together.

Thus, we select an appropriate set of UAVs to communicate
with, instead of learning the importance weight of all others.
Formally, We abstract the relationship among UAVs as a
directed graph G = (U , C), where each node u corresponds to
a UAV, and the property of node u is the hybrid observation
σut received by a UAV u at t. The property of directed edge
cu,u

′

t ∈ {0, 1} acts as an indicator, suggesting whether a UAV
u communicates with a UAV u′ or not (i.e., taking σu

′

t of
a UAV u′ into considerations) at t. Note that cu,u

′

t is not
equivalent to cu

′,u
t . We denote cut :=

[
cu,1t , · · · , cu,Ut

]
as a

vector containing all directed edges starting from a node u,
as:

hut = f(σut ), (22)

Hu
t = Bi-LSTM

[(
hut ⊕ h1

t , · · · ,hut ⊕ hUt
)]
, (23)

cut = g(Hu
t ), (24)

where σut is encoded into a feature hut by an MLP function
f(·). Then, hut is concatenated with the feature of all UAVs,
to form the input of Bi-LSTM whose sequence length is U ,
and we obtain the embedding matrix Hu

t ∈ RU×d, where
d is the embedding dimension. In contrast to LSTM whose
output only depends on the feature of the current and the
previous UAV but ignores all other UAVs, Bi-LSTM is able to
incorporate σut of all UAVs. Inspired by the gating mechanism
of IC3Net [45], we use an MLP function g(·) with softmax
layer for two choices (i.e., whether to communicate or not)
to obtain cut . Note that each row of Hu

t are fed into g(·) in
parallel.

To better optimize the UAV policies, we need to exploit
the learned relational graph G. We define the set of k-hop
neighbors of a UAV u as Uk(u), where u′ ∈ Uk(u) indicates
there exists a directed path from u to u′ with length at most
k in graph G. Based on Uk(u), each UAV u selects the most

Algorithm 1 MetaCS

1: Initialize parameters of Pred, Colla; Initialize policy
network πuθ , value network V uϕ for each UAV u;

2: for iteration= 1, 2, · · · do
3: for t = 0, 2, · · · , T − 1 do
4: Calculate predicted user flow x̂t+1 = Pred(X);
5: for u = 1, 2, · · · , U do
6: Get hybrid observation σut = out ⊕ x̂t+1;
7: Calculate graph-guided feature σ

Uk(u)
t =

Colla(σut , {σu
′

t }u′ ̸=u);
8: Select action aut ∼ πuθ

(
σ

Uk(u)
t

)
;

9: end for
10: Interact the environment with {aut }Uu=1;
11: end for
12: Update Pred by Eqn. (21);
13: Update πuθ , V uϕ , Pred, Colla by Eqn. (27) and

Eqn. (28);
14: end for

appropriate set of UAVs to communicate with and generate a
compact graph-guided feature σ

Uk(u)
t as:

σ
Uk(u)
t := {⊕σu

′

t |∀u′ ∈ Uk(u)}. (25)

Typically, higher values of k tends to yield better overall
performance, but it also incurs greater computational costs and
increase the difficulty of policy learning. We will treat k as a
hyperparameter and show the tuning results in Section VI-B.

After selecting informative UAVs for dynamic interactions
by Colla, UAVs are capable of executing efficient graph-
guided decentralized control. This is because that on one hand,
it is able to avoid unnecessary and costly communication
between UAVs responsible for different regions to ensure QoI
for metaverse. On the other hand, via UAV communication
with selected interactive partners, graph-guided IPPO is able
to mitigate the non-stationary problem of general MADRL and
thus improving the attained overall QoI index, especially in
situations when network overload or service dropout happens.
Therefore, effective UAV collaborations is crucial. Formally,
based on the naive IPPO, policy and value function for each
UAV u are parameterized by θ and ϕ, represented as πuθ and
V uϕ , respectively. By using Colla, the graph-guided value
function is:

V uϕ

(
σ

Uk(u)
t

)
= Eπu

θ

[
T−1∑
t′=t

γt
′−trut′

∣∣∣σUk(u)
t

]
, ∀u, (26)

and updated by minimizing the temporal-difference error [46],
as:

Luvalue = Eπu
θ

[
rut + γV uϕ

(
σ

Uk(u)
t+1

)
− V uϕ

(
σ

Uk(u)
t

)]2
, ∀u.

(27)
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Then a UAV’s policy πuθ is updated by using the importance
sampling weight:

Lupolicy = Eπu
θ

[
min

(
πuθ

(
aut

∣∣∣σUk(u)
t

)
πuold

(
aut

∣∣∣σUk(u)
t

)Aut ,
clip

 πuθ

(
aut

∣∣∣σUk(u)
t

)
πuold

(
aut

∣∣∣σUk(u)
t

) , 1− ϵ, 1 + ϵ

Aut

)]
,∀u,

(28)
where Aut = rut + γV uϕ

(
σ

Uk(u)
t+1

)
− V uϕ

(
σ

Uk(u)
t

)
is the

advantage function, and ϵ is a hyper-parameter that controls
the learning stability.

C. Algorithm Details
The pseudocode of MetaCS is given in Algorithm 1. First,

we utilize a Xavier uniform initializer [47] for all learnable
parameters (Line 1). In each timeslot t, we calculate the
predicted user flow x̂t+1 through Pred (Line 4). Then,
each UAV u gets a hybrid observation σut by merging local
observation out with the predicted user flow (Line 6), and
utilizes Colla to select the most appropriate set of UAVs
to communicate with and generate a compact graph-guided
feature σ

Uk(u)
t (Line 7). At last, a UAV u selects an action aut

according to the current policy network πuθ (Line 8). {aut }Uu=1

is used to interact with the environment and each UAV u
receives the reward rut (Line 10). During each iteration, we
first optimize Pred for a more accurate user flow prediction
(Line 12). Then, πuθ , V uϕ , Pred, Colla are optimized several
times as sample reuse in IPPO [19], by minimizing Luvalue and
maximizing Lupolicy (Line 13).

Apart from IPPO, MetaCS can also work with other multi-
agent actor-critic frameworks, such as MAPPO [31] and
IA2C [48]. For MAPPO, the input of critic networks V uϕ is
replaced from σ

Uk(u)
t to the global state st; see Eqn. (26).

For IA2C, the loss function of UAV’s policy is modified as
Lupolicy = Eπu

θ

[
At log π

u
θ (a

u
t |σ

Uk(u)
t )

]
,∀u; see Eqn. (28).

VI. EXPERIMENTAL RESULTS

A. Dataset Descriptions and Experimental Settings
We conduct extensive experiments on both campus-scale

and urban-scale task regions. For the former, we utilize
datasets from NCSU 2 (with an area of 3.3× 2.8km2 and 35
students) and KAIST (with an area of 2.1 × 2.2km2 and 92
students), where student movement traces are recorded by GPS
receivers. One typical metaverse application in campus-scale
environments is AR tourism (since as the size of tourist attrac-
tions is usually comparable to that of campuses), where virtual
elements are overlaid onto real-world environments to enhance
a visitor’s experience, like viewing virtual reconstructions of
ancient ruin through AR glasses. For the latter, we use a dataset
from Beijing [49] comprising 150 taxi movement traces within
the city’s downtown region as an area of 6.5 × 4.0km2. One
typical metaverse application in urban-scale environments is
AR navigations, which offers real-time intuitive guidance to
drivers by presenting virtual arrows and street names.

2https://crawdad.org/ncsu/mobilitymodels/20090723

TABLE II: Simulation Settings (unchanged parameters)
Notation Value Notation Value Notation Value

T 120 δ 20s P 10
v 20m/s D 60Mbits w1 4.88
w2 0.43 wLoS 1 wNLoS 20
B 240MHz e0 719.2KJ ρ0 0.01w
β0 -30dBm F 0.94 f 2GHz

Simulation settings are summarized in Table II. For MU-
MIMO, we referenced the parameter settings in [35]; energy
supply and flight capabilities of UAVs were taking from the
public report of DJI Matrice300 RTK3. By default, we consider
that U = 5, U = 5, U = 10 UAVs are deployed, set
T = 120, T = 120, T = 240, in NCSU, KAIST and
Beijing respectively. We set AoI threshold τmth = 30 timeslots
and throughput requirement µmth = 3 Mbps for all users at
each timeslot. We employed PyTorch as the implementation
framework and trained all models on Ubuntu 20.04.5 LTS with
GeForce RTX A6000 GPUs. We conducted a comprehensive
set of experiments, including hyperparameter tuning, ablation
study, performance comparison with six baselines, and trajec-
tory visualization. Results were assessed using the overall QoI
index I , as well as individual ones including episodic AoI τ ,
throughput satisfactory ratio Iµ, AoI satisfactory ratio Iτ , and
average energy consumption ē.

B. Hyperparameters Tuning

We select two key parameters: (a) the number of regions
Z ∈ {9, 36, 81, 144} in user modeling to study the impact
of region partition granularity, and (b) the number of hop
k ∈ {0, 1, 2} to investigate the impact of UAV commu-
nications. The embedding dimension d = 64; number of
neighbors in MHSSA Nsem = 5; sequence length L = 5 and
Nblock = 2 blocks in Pred. For remaining hyper-parameters,
we adopt the commonly used settings in [31], which include
using the Adam optimizer for all learnable parameters and
setting γ = 0.99. Results are given in Table III. We observe
the following. Overall QoI index reaches a peak 3.190 when
Z = 36 in NCSU, and 3.138 when Z = 81 in KAIST. This is
because smaller Z may lead to a reduction of user in/outflow
density, however larger values may increase the computational
complexity of learning. Due to the difference of workzone
size and number of students between NCSU and KAIST, we
set the optimal granularity as Z = 36 and Z = 81 for two
campuses, respectively. On the other hand, when k increases,
we see that overall QoI index first goes up and then decreases
in both datasets. For example, MetaCS achieves I = 2.977
and 2.939 for k = 0, and I = 3.078 and 3.123 for k = 2,
which is worse than the attained I for k = 1. In general, larger
k leads to better results on UAV trajectory planning but also
higher inter-UAV communication costs. We see a peak value
due to possible redundant UAV interactions, which increases
the solution space and does harm to the stability of IPPO.
When UAVs are deployed in a very large-scale workzone,
they do not require global knowledge to make individual
decisions, thus it is more appropriate for them to receive only

3https://www.dji.com/cn/matrice-300
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TABLE III: Hyperparameters Tunning
Dataset NCSU KAIST
Metric I Iτ Iµ τ ē I Iτ Iµ τ ē

k = 0

Z = 9 2.950 0.894 0.903 12.581 0.303 2.855 0.893 0.871 12.998 0.305
Z = 36 2.977 0.901 0.919 11.832 0.303 2.860 0.877 0.893 11.916 0.307
Z = 81 3.017 0.961 0.915 10.001 0.302 2.939 0.907 0.897 11.331 0.305
Z = 144 2.935 0.890 0.915 12.218 0.303 2.863 0.878 0.884 11.457 0.307

k = 1

Z = 9 3.125 0.970 0.944 9.215 0.302 2.998 0.928 0.919 9.239 0.307
Z = 36 3.190 0.981 0.968 6.676 0.303 3.086 0.957 0.943 9.326 0.305
Z = 81 3.118 0.968 0.943 8.801 0.302 3.138 0.960 0.961 8.288 0.306
Z = 144 3.069 0.957 0.928 9.747 0.302 3.056 0.191 0.932 9.653 0.305

k = 2

Z = 9 3.054 0.972 0.923 9.909 0.302 3.080 0.189 0.939 10.009 0.305
Z = 36 3.078 0.971 0.931 8.203 0.303 3.106 0.194 0.947 8.169 0.305
Z = 81 3.117 0.975 0.943 8.541 0.303 3.123 0.194 0.956 7.364 0.306
Z = 144 3.071 0.953 0.928 10.239 0.302 3.083 0.192 0.941 8.628 0.305

adjacent information from neighbors. The above best set of
hyperparameters will be used in the subsequent experiments.

C. Ablation Study

We perform ablation study by gradually removing two key
components of MetaCS. Based on the base design of IPPO,
from Table IV, we see that the complete MetaCS yields
8.9% and 8.2% improvements on Iτ and I , respectively,
compared to MetaCS w/o Pred in NCSU dataset. Due to
more dispersed users and higher degree of unpredictability in
NCSU (if compared to KAIST), Pred is required to obtain
much more precise in/outflow user modeling. In contrast to
NCSU, there are more users in KAIST and many of them
tend to gather together during certain periods in core areas
like dormitories, dining halls, and classrooms. The presence
of large crowd results in more severe occurrence of possible
network overload if insufficient number of UAVs are scheduled
over. Benefited from our proposed efficient UAV coordination
mechanism, MetaCS achieves 6.4%, 6.7% improvement of
Iµ, I compared to that when removing Colla in KAIST,
respectively. Furthermore, when both Pred and Colla are
removed, we observe obvious overall QoI index drop, demon-
strating the effectiveness of combining two together. Note that
although the total moving distance of UAVs is increased when
using Pred and Colla, the energy consumption has barely
changed, since the consumed energy when flying at maximum
speed (3369KJ) is comparable to hovering (3180KJ), based
on the energy model of UAVs given by Section III. Thus,
MetaCS enhance the QoI while maintaining nearly constant
energy consumption.

Based on the base design of IA2C [48], we find that
complete MetaCS can also achieve superior performance.
However, without our IPPO’s reuse technique, IA2C typically
exhibits lower sample efficiency, as a result of lower attained
overall QoI index I . Therefore, IPPO is chosen as the basis
for MetaCS.

D. Performance Comparison with Baselines

We compare MetaCS with six baselines:
• I2Q [50]: It learns an independent actor and critic for each

agent, by modeling the optimal conditional joint policy
of other agents without any communication between
them. We consider it as the state-of-the-art decentralized
MADRL approach.

• HATRPO [51]: It employs a centralized critic and a
policy iteration procedure with monotonic improvement
guarantee, which is considered as an enhanced version
of MAPPO [31] and state-of-the-art centralized MADRL
approach. We use it to show the benefits of our graph-
guided UAV navigation compared with sharing all infor-
mation.

• MAIC [52]: It proposes a multi-agent incentive com-
munication (MAIC) framework, which enables agents to
exchange information based on teammate modeling for
explicit coordination. It is considered as the state-of-
the-art communication-based MADRL approach and we
use it to validate the benefits of our graph-guided UAV
collaboration.

• t-LocPred [53]: It employs a memory-augmented atten-
tive sequential model to deal with the difficulty of long-
term user modeling, which is considered as the state-of-
the-art user behavior modeling approach. We integrate
it with the IPPO backbone, in a manner consistent with
MetaCS.

• GCRL-minAoI [33]: It is the state-of-the-art DRL ap-
proach to minimize AoI of all mobile users in MCS,
which consists of a model-based MCTS [18] structure
for path planning and a relational graph convolutional
network to extract spatial correlation between UAVs and
mobile users.

• Random: Each UAV u chooses an action aut randomly
from action space A.

To justify the effectiveness and robustness of MetaCS, we
vary the number of UAVs, throughput requirement and AoI
threshold, respectively. We explicitly investigate tasks with ex-
tensive VR requests by increasing the throughput requirement,
and tasks with extensive AR requests by decreasing the AoI
threshold.

1) Impact of the number of UAVs U : We vary U ∈
{2, 3, 4, 5, 7, 10} in NCSU and KAIST datasets, and from
Fig. 3 and Fig. 4, we observe that MetaCS consistently outper-
forms all six baselines in terms of overall QoI index I . With
fewer UAVs, the benefits offered by Pred and Colla modules
are crucial to achieve the desirable QoI level. Taking NCSU for
example, since it is a big campus, only deploying two UAVs
is far from sufficient, however MetaCS still obtains I = 2.587
which is 29% higher than the best baseline I2Q. Furthermore,
we can see that the capability for UAVs to accomplish tasks
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TABLE IV: Ablation Study
Base

designs Improvements NCSU KAIST
I Iτ Iµ τ ē I Iτ Iµ τ ē

IPPO

MetaCS 3.190 0.981 0.968 6.676 0.303 3.138 0.960 0.961 8.288 0.306
MetaCS w/o Pred 2.947 0.892 0.912 12.264 0.303 3.070 0.947 0.937 9.299 0.305
MetaCS w/o Colla 2.977 0.901 0.919 11.832 0.303 2.939 0.907 0.897 11.331 0.305

MetaCS w/o Pred & Colla 2.899 0.877 0.900 14.135 0.302 2.855 0.902 0.872 11.944 0.305

IA2C

MetaCS 2.999 0.927 0.908 12.788 0.303 3.072 0.942 0.943 8.315 0.306
MetaCS w/o Pred 2.748 0.885 0.832 16.106 0.303 2.921 0.894 0.896 13.169 0.306
MetaCS w/o Colla 2.974 0.907 0.900 14.717 0.302 2.571 0.814 0.790 17.913 0.306

MetaCS w/o Pred & Colla 2.724 0.863 0.825 17.194 0.302 2.564 0.797 0.786 18.758 0.306
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Fig. 3: Impact of the number of UAVs U (NCSU).
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Fig. 4: Impact of the number of UAVs U (KAIST).

in metaverse has been gradually improved as U increases. In
NCSU with relatively lower user density, MetaCS is sufficient
to achieve nearly 100% throughput satisfactory ratio and AoI
satisfactory ratio with 10 deployed UAVs. However, when
excessive UAVs are used, the performance improvement of
GCRL-min(AoI) becomes marginal and may even lead to a
decline in overall QoI index (see Fig. 4). This is because it
suffers from the exponential increased tree-search space w.r.t
U . The attained QoI by all methods in Beijing dataset is half
of that in campus environments such as NCSU and KAIST,
due to the fact that its task duration and energy consumption
of each UAV being doubled. However, MetaCS still achieve
the highest QoI when varying the number of UAV from 5 to
25, as shown in Fig. 5, which demonstrates its capability to
scale to larger task region involving more users and deployed
UAVs.

2) Impact of throughput requirement µmth : We vary µmth
from 1Mbps to 9Mbps for all users. From Fig. 6, Fig. 7
and Fig. 8, we see that the overall QoI index I by MetaCS
consistently exceeds that of six baselines. For example, when

µmth = 9Mbps, MetaCS achieves the highest I = 2.876 in
NCSU, which is 17.6%, 18.3% higher than that of I2Q and t-
LocPred, respectively. The best baseline I2Q performs worse
when µmth is increased from 7Mbps to 9Mbps in NCSU. This
is because the employed decentralized method is unable to
construct effective UAV collaboration when users request high
throughput demand, such as immersive VR games. In this
case, navigating UAVs closer to each other as a group is
crucial to increase the provided data rate by uplink MU-
MIMO. Furthermore, when µmth increases, Iµ of most methods
decreases rapidly, leading to a decline in overall I . However,
MetaCS still remains at a high level, attributed to the fact
that it sacrifices some degree of Iτ (e.g., by giving up data
collections for a small number of remote users) in exchange for
a less drastic drop in Iµ, since overall QoI index evaluates their
bottleneck. We observe that HATRPO receives significantly
lower I in NCSU than in KAIST, which also drops drastically
with higher µmth . The reason is that HATRPO lacks the user
modeling mechanism, which makes it unable to accurately
capture their movement patterns between regions in the NCSU
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Fig. 5: Impact of the number of UAVs U (Beijing).
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Fig. 6: Impact of throughput requirement µmth (NCSU).
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Fig. 7: Impact of throughput requirement µmth (KAIST).

workzone, that when greater in/outflow dynamics happen,
UAVs cannot be properly scheduled for services. Also, since
HATRPO is a fully centralized approach, the local policy
space of UAVs is expanded, thereby increasing the training
complexity which results in sub-optimal UAV coordination in
the complex NCSU environment. Finally, MetaCS outper-
forms all other baselines in Beijing dataset, since taxis exhibits
considerable mobility increase compared to students walking
in campuses, thus the spatiotemporal distribution of users (i.e.,
taxis) is more complex and unpredictable, making accurate
user prediction crucial.

3) Impact of AoI threshold τmth : Fig. 9, Fig. 10 and Fig. 11
show the impact of application determined AoI threshold τmth
of all users by varying it from 1 to 50 timeslots. When the
τmth varies from 20 to 50 timeslots, MetaCS yields QoI index
I significantly surpasses all six baselines, especially in NCSU.
For example, when τmth = 20 timeslots, MetaCS achieves the

highest overall QoI index I = 3.146 in NCSU, as 9%, 22%
higher than two best baselines I2Q and t-LocPred, respectively.
We further observe that I obtained by MetaCS almost remains
constant in these settings, since it is able to optimize the
AoI satisfactory ratio to nearly 100%, and then throughput
satisfaction ratio becomes the bottleneck. When decreasing
τmth from 30 to 10 timeslots (i.e., users request for more
delay-sensitive metaverse services), all methods suffer from
a significant decrease in Iτ , however MetaCS still achieves
highest degree of QoI satisfaction. We also see a significant
decline in I obtained by MAIC, because its attention-like
communication allocates non-zero weights to insignificant and
irrelevant UAVs, thereby diminishing the advantages conferred
by UAV interactions. Furthermore, when τmth is decreased from
10 to 1 timeslot (which corresponds to the applications that
needs AR collaborations of stringent latency requirements),
MetaCS still outperforms all other baselines in terms of overall
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Fig. 8: Impact of throughput requirement µmth (Beijing).
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Fig. 9: Impact of AoI threshold τmth (NCSU).
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Fig. 10: Impact of AoI threshold τmth (KAIST).

QoI index. When we decrease AoI threshold τmth , MetaCS and
t-locPred are better suited to cope with the possible server
dropout, compared to other baselines which do not well model
user behaviors. Our designed Pred module explicitly takes
both geographic and semantic neighbors into consideration
that assists to achieve a 6% improvement over t-locPred
when τmth = 20 timeslots in KAIST dataset. Finally, MetaCS
attains highest overall performance in terms of QoI index in
Beijing dataset. With larger task region and more involved
users, UAVs need to accomplish a dynamic spatial division
of labor through appropriate collaborations. We find that the
throughput satisfactory ratio achieved by all methods except
random fluctuates with different AoI thresholds, since the AoI
satisfaction becomes the performance bottleneck.

E. Trajectory Visualizations

For clearer demonstrations, we show the trajectories of
UAVs given by MetaCS and attained metrics are displayed
in the form of heatmap. U = 3, U = 3 and U = 10 UAVs
are deployed in NCSU, KAIST and Beijing, respectively. In
NCSU (as shown in Fig. 12), its core area hosts larger number
of user regular movements, and thus requiring more UAVs to
fly over. Meanwhile, there are also many other users located
in remote areas (e.g., upper left, upper right, and lower left
regions), and ignoring them completely would harm the task-
level overall QoI index. We observe that the green and blue
UAVs move back and forth between the core area and remote
areas, but not in the same pace but in different timeslots.
This indicates that they learn to well complement each other
to ensure that users are always being serviced by enough
UAVs. For KAIST (Fig. 13), even more users are concentrated
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Fig. 11: Impact of AoI threshold τmth (Beijing).
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Fig. 12: Visualized trajectories of UAVs and attained metrics
in the form of heatmap (NCSU). Each column corresponds to
a particular timeslot; Heapmaps in the second row show the
average µmt of all users within a region, to indicate whether
the data upload requests of most users in the core area are
being met sufficiently or not. Heatmaps in the third row show
the sum of episodic AoI τmt of all users within a region, to
intuitively indicate which areas are experiencing more AoI
violation.

in the central part of the campus, leaving fewer users in
remote regions. Therefore, we observe that green and blue
UAVs are servicing the concentrated users almost at all times,
to avoid possible network overload. Meanwhile, the purple
UAV tends to move across different remote regions to cover
corner cases. In Beijing dataset (Fig. 14), the eastern part,
known as the central business district, usually accommodates
very high density of taxis. Thus we see that one single UAV
(purple) is responsible for covering the western part to prevent
AoI violation. Meanwhile, the remaining nine UAVs (blue)
generate looped trajectories exclusively within the eastern part,
thereby achieving a clear spatial division of labor to support
satisfactory network throughput for metaverse applications.

The above benefits in all campuses are achieved by our

v
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UAV movement 
directions

 Prevent 
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AoI violation

Fig. 13: Visualized trajectories of UAVs and attained metrics
(KAIST).

proposed user behavior prediction and UAV collaboration
modules, where precise prediction of crowd flows enables
UAVs to access remote areas just in time, while accurate
UAV interactions ensures that spatial-temporal throughput
requirement is guaranteed.

To further confirm this, we use the root mean square error
(RMSE) to evaluate the accuracy of Pred in MetaCS, denoted

as
√

1
T

∑T−1
t=0 (xt+1 − x̂t+1)2. From Fig. 15(a), we observe

that the RMSE obtained by MetaCS are 0.324, 0.263 and
0.404 on three datasets, which are lower than the ones by
DeepCrowd [54], and significantly lower than t-LocPred as
0.529, 0.556 and 0.450, showing a reduction of 38.8%, 52.7%
and 10.2% of RMSE, respectively. This is because MetaCS
has the comprehensive ability to capture both temporal and
spatial dependencies through TSA and MHSSA. Furthermore,
MetaCS employs both the geographic and semantic masks,
which explicitly considers long-range spatial dependencies in
the regions where similar movement patterns may be dispersed
throughout different locations, rather than being clustered
together. These techniques are not considered in either the
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Fig. 14: Visualized trajectories of UAVs and attained metrics
(Beijing).

Fig. 15: (a) Comparison of user flow prediction performance
between MetaCS, DeepCrowd, and t-LocPred. (b) Commu-
nication frequency among UAVs in Colla. Here error bars
represent the standard deviation over 5 runs.

CNN-based t-LocPred or DeepCrowd which are built on the
pyramid ConvLSTM architecture, and thus MetaCS exhibits
better flow prediction performance.

Fig. 15(b) illustrates the communication frequency among
UAVs in Colla, as the the frequency of a particular UAV
u incorporates σu

′

t of other UAVs {u′} during the entire
task. We see that UAV interactions are frequent in NCSU and
Beijing datasets, evidenced by the communication frequency
of the green UAV in NCSU and the blue UAVs in NCSU and
Beijing datasets, respectively. Due to the larger task region in
the these two datasets, inter-UAV communication can assist
each UAV to acquire more information where AoI violations
or throughput dissatisfaction happen in certain regions. As a
result, they fly over to provide emergent services. In contrast,
the purple UAV relatively interacts less frequently with others
in all three datasets. It is assigned the role of either servicing
the southwest distant region in NCSU, or shuttling between
remote areas in KAIST and Beijing. Therefore, frequency
communication may not benefit the overall QoI index.

F. Computational Complexity Analysis

In practice, the model inference time is critical in metaverse
applications. The time complexity of MetaCS can be theoret-

TABLE V: Time cost in one-time model inference (ms).
Dataset MetaCS HATRPO I2Q t-LocPred MAIC GCRL-min(AoI)
NCSU 3.471 2.106 2.067 6.176 2.711 19.869
KAIST 3.632 2.274 2.078 6.911 2.738 38.510
Beijing 3.831 2.353 2.092 7.470 2.765 55.204

ically calculated by:

O

(NMLP∑
i=1

di,in ·di,out+Nblock(L
2 ·Z ·d+L ·Z2 ·d)+U ·d2

)
,

(29)
where NMLP denote the number of linear layers in MetaCS,
di,in and di,out represent the dimension of input and output
features of i-th linear layers; d donetes the embedding di-
mension in both Pred and Colla; The second term is for
Pred, Nblock denotes the number of encoders, L, Z, denote
the length of X and the number of regions, respectively; The
third term is for Colla, O(U · d2) denotes the computational
complexity of Bi-LSTM, where U is the number of UAVs.

Then, we demonstrate the magnitude of MetaCS’s inference
time by comparing with baselines. Table V shows the time
cost from UAVs receive an observation to their actions are
produced. When testing, we set Nblock = 3, L = 6, Z = 36,
d = 64, U = 5. We see that MetaCS is significantly
faster than GCRL-min(AoI) and t-LocPred. This is because
GCRL-min(AoI) employs Monte-Carlo tree search, resulting
in exponential increase of computational complexity with
more UAVs. t-LocPred uses LSTM to capture the temporal
dependencies of user movements, unlike our attention modules
in Pred which can be computed in parallel. Although MetaCS
performs slightly slower than I2Q, HATRPO, and MAIC, it
still maintains millisecond-scale speed, even when applied to
large datasets, where the difference between other approaches
are negligible in practice.

VII. CONCLUSION

In this paper, we proposed MetaCS, a user behavior pre-
diction and UAV selective collaboration framework, for pro-
viding satisfactory QoI experiences of underlying metaverse
users by collecting their data in MU-MIMO uplink channels.
Specifically, we explicitly defined a quantitative overall QoI
index, consists of both throughput and AoI satisfactory ratios.
Based on IPPO, a Transformer-based spatial-temporal self-
attention module is proposed to simultaneously incorporate
geographic and semantic neighborhood information between
regions. Also, a relational graph learning mechanism is intro-
duced to enable the selection of the most informative partners
for each UAV. Extensive results and trajectory visualization on
real mobility datasets in NCSU, KAIST and Beijing demon-
strate that MetaCS outperforms all six baselines in terms of
overall QoI index.
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